A toughness condition for fractional (k, m)-deleted graphs
نویسندگان
چکیده
In computer networks, toughness is an important parameter which is used to measure the vulnerability of the network. Zhou et al. [24] obtains a toughness condition for a graph to be fractional (k,m)–deleted and presents an example to show the sharpness of the toughness bound. In this paper we remark that the previous example does not work and inspired by this fact, we present a new toughness condition for fractional (k,m)–deleted graphs improving the existing one. Finally, we state an open problem.
منابع مشابه
Toughness Condition for a Graph to Be a Fractional (g, f, n)-Critical Deleted Graph
A graph G is called a fractional (g, f)-deleted graph if G - {e} admits a fractional (g, f)-factor for any e ∈ E(G). A graph G is called a fractional (g, f, n)-critical deleted graph if, after deleting any n vertices from G, the resulting graph is still a fractional (g, f)-deleted graph. The toughness, as the parameter for measuring the vulnerability of communication networks, has received sign...
متن کاملA NEIGHBORHOOD UNION CONDITION FOR FRACTIONAL (k, n′,m)-CRITICAL DELETED GRAPHS
A graph G is called a fractional (k, n′,m)-critical deleted graph if any n′ vertices are removed from G the resulting graph is a fractional (k,m)-deleted graph. In this paper, we prove that for integers k ≥ 2, n′,m ≥ 0, n ≥ 8k + n′ + 4m− 7, and δ(G) ≥ k + n′ +m, if |NG(x) ∪NG(y)| ≥ n+ n′ 2 for each pair of non-adjacent vertices x, y of G, then G is a fractional (k, n′,m)-critical deleted graph....
متن کاملIndependent Set Neighborhood Union And Fractional Critical Deleted Graphs∗
A graph G is called a fractional (k, n′,m)-critical deleted graph if any n′ vertices are removed from G the resulting graph is a fractional (k,m)-deleted graph. In this paper, we determine that for integers k ≥ 1, i ≥ 2, n′,m ≥ 0, n > 4ki+ n′ + 4m− 4, and δ(G) ≥ k(i− 1) + n′ + 2m, if |NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥ n+ n′ 2 for any independent subset {x1, x2, . . . , xi} of V (G), then G is a...
متن کاملOn fractional (k,m)-deleted graphs with constrains conditions
Let G be a graph of order n, and let k ≥ 2 and m ≥ 0 be two integers. Let h : E(G) → [0, 1] be a function. If ∑ e∋x h(e) = k holds for each x ∈ V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e ∈ E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(...
متن کاملDistinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 113 شماره
صفحات -
تاریخ انتشار 2013